
Network Management for New Era
Dr. R. Prabakaran, M.C.A., M.Phil., M.Tech,P.hD

Head, Department of Computer Applications,
J.Palanivel, M.C.A., M.Phil.,

Asst Prof, Department of Computer Applications,

Arignar Anna Institute of Management Studies & Computer Applications
Pennalur, Sri Perumbudur, Kanchipuram District.

Abstract -The increasing complexity and heterogeneity of

modern networks has pushed industry and research towards a

single and consistent way of managing networks. The effort to

define a single industry-standard API for network

management basically failed because it did not address aspects

like complexity and ease of programming. Recently, a

common approach is to map established network management

standards into another object model, often based on the

emerging CORBA standard. Unfortunately even this

approach has shown many drawbacks mostly related to the

significant amount of code that has to be linked with the final

application and to the many limitations and imperfections of

the mapping itself.

This paper describes a new approach to inter-domain

management that attempts to overcome the limitations of

current solutions. The goal is to allow people to write hybrid

CMIP and SNMP based network management applications,

using a single and simple object model. Relevant

characteristics of this approach are: light, extensible, object-

oriented, language-neutral, built upon software-components,

string-syntax based, Internet-ready. This demonstrates that it

is feasible to implement simple and light applications for inter-

domain management without the need to use expensive or

complex technologies.

Keywords: Network Management, Object-Oriented

Programming, Java, CORBA.

1. INTRODUCTION

The increasing complexity and heterogeneity of

modern networks and the advent of distributed computing

are making network management both more important and

complex. In this decade many companies and research

institutions have attempted to simplify the scenario by

defining a single and consistent way for managing

heterogeneous networks based on both CMIP and SNMP.

In this view, X/Open has defined an industry standard C-

based API called XOM/XMP, able to unify these two

dominant network management protocols. The idea was to

allow people to write applications using a single API in

order to simplify the integration of code written by

different people.

Recently, the increasing popularity of the CORBA

industry-standard pushed many people to write mappings

between CMIP/SNMP and CORBA based on the

assumption that CORBA will become the network

management standard of the future and that everybody will

use it instead of CMIP and SNMP. Despite their efforts,

today there are many different mappings available that

usually do not fully support CMIP/SNMP. Another

drawback is related to the significant amount of code that

must be generated for implementing these mappings and

that has to be linked with the final application. Other than

this, a network management expert that intends to write a

management application must learn CORBA, IDL (the

language used to specify the CORBA interfaces), how the

mappings have been defined, and must have an ORB

(Object Request Broker) installed somewhere. It is clear

for instance, that the initial vision of SNMP to be simple

and light has been jeopardized.

This is based on the idea that so far network

management has been considered like a special software

engineering problem where solutions must be built ad-hoc

and cannot reuse widely established concepts. Today most

of the network management people come from the "Vi,

Unix and C" school and ignore new concepts and

innovations like software components, and truly object-

oriented software development (most of the code is object-

based but not object-oriented). It is a common belief to

pretend to solve a problem generating code for all the

possible situations (for instance XOM/XMP and many

CMIP/SNMP to CORBA mappings generate a class for

each data type) instead of trying to define a way to

simplify the problem. The advent of Java and TCL

R. Prabakaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4344-4349

www.ijcsit.com 4344

demonstrated that the short reign of native-code-

generating-object-oriented compiler is about to be over.

Internet and the market demand light, machine-

independent applications capable to roam from machine to

machine.

The goal is to allow people to easily write light

network management applications that fully support both

CMIP and SNMP using a single and simple object model.

These applications are Internet-ready and can be integrated

with the world-wide web using the Java bindings here

described. The guidelines and the code examples have

been drawn from implementation experience and in the

course of designing and implementing commercial

products and research prototypes.

2. NETWORK MANAGEMENT STANDARDS

This shows how the process of integrating network

management standard such as CMIP and SNMP is done.

First of all the difference between the two standards is

hidden, then the infrastructure is built. At last the

integration is done.

Network programmers need a single way to

manipulate instances of various object models. The main

problem arises from the data types that have to be

managed. In SNMP this is easy to handle because the

different data types are about ten. CMIP is a lot more

flexible in this respect and it allows the user to define new

data types. Due to this, the number of data types that a

network management application has to handle is not

determined a priori. Therefore a way has to be defined to

handle different data types of arbitrary complexity.

The solution proposed here is based on string

notation. In this view, every data type is represented using

strings. Aggregate data types like sequences or sets are a

composition of basic data types like integer or boolean.

The fact to have a single data type makes things simple

and allows applications written in whatever language to

use it even if this representation slows down the system

code that uses data types to speed operation.

Despite the advantages of a string-based notation,

some users may want to define information using a

different object model. Programmers define data values

using the string representation and then the

encoder/decoder module converts this string to BER

(Basic Encoding Rules) and back.

The conversion is based on meta-data information. In

the stack, the ASN.1 and GDMO compilers compile input

documents into a data file that is read by the

encoder/decoder at startup time. These data files contain

information about the data types and object-model

dependent information. In the case of CMIP, data files

contain information about managed object classes, name

binding, actions and notification. In case of SNMP

information concerning object identifiers and the textual

description of the various attributes are stored in separate

files. At runtime it is possible to access this information

not only for encoding/decoding purposes but also for

querying information about a particular attribute or action.

In SNMP there is no concept of connection and every

message is sent independently usually over UDP. In CMIP

every protocol request travels over an association that has

to be established first and then closed when the

communication is over. Users should not be concerned

about associations and they should think only in terms of

objects. Every time a request is sent to the stack, the object

instance is analyzed and the correct agent managing that

instance is identified and an association is opened. An

association stays alive until it is closed either by one of the

partners or when an error occurs (for instance if the

connection goes down).

The string representation and to the automatic

association handling, it is now possible to transparently

manipulate remote instances using both SNMP and CMIP

in a single and uniform way.

2.1 Application-side Bindings

Clients communicate with the Proxy over HTTP and

because the data exchange type is based on strings, it is

easy to write bindings in whatever programming language

either object-oriented or not. For the sake of simplicity

bindings described in this section are written using Java.

Similar considerations can be done for other

languages such as C++ or TCL. The class hierarchy is

quite simple. The class Proxy is responsible for handing

communications with the Proxy application. It

transparently sends the requests and receives the

responses. The class Information contains the information

relative to the request and to the response(s), stored in an

R. Prabakaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4344-4349

www.ijcsit.com 4345

object of class java.util.Hashtable that are passed as input

parameter to an instance of class Proxy. Subclasses

SNMPObj and CMIPObj implement some high level

manipulation functions for manipulating the input/output

information and invoking Proxy methods whenever a

request has to be issued. These subclasses have been

provided to further simplify the access to the Information

and Proxy classes and have to be considered like pure

facilities.

The example below clarifies this situation.

Proxy p ;

CMIPObj cmip ;

try {

p = new Proxy(HOSTNAME) ; //Where proxy host is running

cmip = new CMIPO b j(p, "MIBCTL") ; // TITILE

cmip.SetObjectClass ("system") ;

cmip.SetO bjectInstance ("netowrkID") ; //Network ID ie. Telco

cmip.SetAttribute ("systemTitle" , " ") ;

cmip.CMIPGetAttributes () ; / / Issue t h e CMIP M-GET request

System.out.println("system T it le is :" +cmip.GetAttribute("systemTitle"));

} catch (Exception e) {

 System.out.println ("Error: " + e) ;

}

When the CMIPGetAttributes() method is called,

the Proxy sends back the CMIP response containing

objectClass, object Instance, currentTime and system

Title. CMIPObj receives those values and puts them in the

cmip instance itself. In case of system Title , the original

empty value is replaced with the one returned by Proxy.

Current Time, not present in the request, is added to the

input object. This approach allows to easily getting and

set attribute values other than allowing issuing operations

in a few lines of code. If a request fails for whatever

reason an exception of class Proxy Exception is raised:

users should not deal with protocol errors but they should

interact with remote objects only using programming

constructs. The Information class and its subclasses

SNMPObj and CMIPObj, greatly simplifies and reduces

the code users have to write:

This solution allows saving bandwidth because only

the needed attributes are exchanged between the Proxy and

the Java application and because unmodified attributes,

for instance object Class in a CMIP response, are not

transmitted. Classes SNMPObj or CMIPObj other than

issuing protocol requests, allow to retrieve metadata

information and to convert object identifiers that can be

expressed in both numeric or symbolic form.

public class Information extends java.lang.Object {

 public void SetAttribute (String name, Object value)

 throws IllegalArgumentException { }

 public Object GetAttribute(String name) {}

 public void RemoveAttribute(String name){}

 public Enumeration GetAttributeValues(){}

 public Enumeration GetAttributeNames(){}

 public void RemoveAllAttributes(){}

R. Prabakaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4344-4349

www.ijcsit.com 4346

}

public class CMIPObj extends Information {

 public void SetObjectClass(String val) {}

 public String GetObjectClass() {}

 public void SetObjectInstance(String val){}

 public String GetObjectInstance(){}

 public Information GetActions() throws ProxyException{}

 public Information GetNameBindings() throws ProxyException{}

 public String GetSyntaxInfo(String syntax)throws ProxyException{}

 public String ConvertOID(String oid)throws ProxyException {}

 /* Management Operations * /

 public void CMIPCreateObject()throws ProxyException {}

 public void CMIPDeleteObject()throws ProxyException {}

 public Vector CMIPDeleteContainedInstances()throws ProxyException {}

 public void CMIPGetAttributes()throws ProxyException {}

 public Vector CMIPGetContainedInstances()throws ProxyException{}

 public void CMIPSetAttributes()throws ProxyException{}

 public Vector CMIPSetContainedInstances()throws ProxyException{}

 public void CMIPPerformAction()throws ProxyException{}

 public Vector CMIPPerformActionContainedInst()throws ProxyException

 public int NotificationsAvailable()throws ProxyException {}

 public Information WaitForNotification(int timeout)throws ProxyException {}

 public void DeleteEFD()throws ProxyException {}

 public void CreateEFD(String inst,String fltr) throws ProxyException {}

}

 public class SNMPObj extends Information {

 public String SNMPGetAttributeInfo(String syntax)throws ProxyException {}

 public String ConvertOID(String oid)throws ProxyException{}

 /* Management Operations * /

 public Vector SNMPWalk() throws ProxyException {}

 public void SNMPGetAttribute()throws ProxyException {}

 public void SNMPGetNextAttribute()throws ProxyException{}

 public void SNMPSetAttribute()throws ProxyException{}

}

Respectively:

 GetActions returns the CMIP actions that can be performed by the object

 GetNameBindings returns all the name bindings of the object, useful for creating managed objects.

 GetSyntaxInfo returns the requested ASN.1 syntax in HTML format

 ConvertOID is responsible for converting object identifiers

 SNMPGetAttributeInfo returns the attribute description specified in the RFC. Metadata information is

either contained in the Proxy (the object identifier mapping information and the RFC information) or it is

retrieved from the stack (ASN.1 information).

R. Prabakaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4344-4349

www.ijcsit.com 4347

 The class Proxy is responsible for handling the communications with the Proxy.

public class Proxy extends Object {

public Proxy(String host)throws UnknownHostException, IOException {}

public void dispose()throws IOException {}

 public Vector SendRequest(String oper, String context, Information input)

 throws ProxyException {}

 public String SEndOffLineRequest(String oper, String context,String inputStr)

 throws ProxyException {}

}

Respectively:

 SendRequest sends a protocol request to the Proxy using as input I nf or m at io n that contains information

related to the target managed object

 SendOffLineRequest sends an off-line request to the Proxy (for instance OID mapping).

The context parameter contains protocol-related

information. In case of CMIP it contains the agent AE-

Title whereas for SNMP it contains the TCP/IP address of

the SNMP agent. It is worth to remark that the operation

parameter is a string (for instance "CMIPGet") used by

Proxy to identify the droplet that implements such

operation. This approach will allow in the future to support

further protocols and object models such as CORBA

without the need to modify the classes Proxy and

Information hence to define a new object model. In fact it

is sufficient to add some new droplets and define some

new values for the operation parameter (for instance

"CORBAGet").

The method SetObjectClass(String val) is defined

like SetAttribute("objectClass", val) or the method

CMIPGetAttributes() internally calls

proxy.SendRequest("CMIPGet", agentAET, super /*

Information * /).

The decision to base this work on the Proxy derives

from the fact that, especially with the advent of Internet,

applications have to be as light as possible. It does not

make sense to duplicate part of the functionality of the

Proxy on each network management application. Also, in

case of CMIP, the Proxy should be installed by the ones

who install the stack and the OSI agent, if any, and Proxy

users should not be responsible for configuration or

maintenance tasks.

This table shows that the proposed solution is

preferable over the listed alternatives in many important

aspects like application size and ease of use.

 Proposed Solution TCL-CMIS Scotty XMP GOM

Object-Oriented Yes No No No Yes

Application Size Light Medium Medium Medium/Large Large

Ease of Use Easy Easy Easy Difficult Easy

Typing Weak Weak Weak Strong Weak

Currently Supported Object
Models

CMIP/SNMP CMIP CMIP/SNMP CMIP/SNMP CMIP/CORBA

Language Bindings Java/C++ TCL TCL C C++

Data Representation String String String XOM GOM (11 types)

Metadata Access Yes No No Impl. Dependent Yes

Pre-requisites Java VM TCL TCL XOM/XMP Obj. Broker

R. Prabakaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4344-4349

www.ijcsit.com 4348

Other solutions based on TCL, despite their

simplicity and their similarity with the approach here

described, have a bigger application size and hence cannot

run unmodified on different platforms due to their use of

C/C++ libraries that interface TCL with CMIP/SNMP

resources. Finally, the proposed solution thanks to the Java

application bindings and to its limited size enables the

construction of a new class of network management

applications that can be easily integrated with the world-

wide web and Internet.

3. CONCLUSION

This paper shows a new approach to inter-domain

management that overcomes limitations of many current

solutions. Main characteristic are: ease of use, language

neutral bindings, based on established technology like

HTTP, small size, open to the integration of additional

protocols. Bindings

REFERENCES :

1. SNMP Essentials, Second Edition, Douglas Mauro and Kevin

Schmidt, O’Relly, 2005.

2. Java Programming with CORBA, 2nd Edition, Andreas Vogel and

Keith Duddy, Wiley publishing.

3. Network Management: Principles and Practice, Mani Subramanian,

Addison-Wesley, 2000

4. http://www.yolinux.com/TUTORIALS/CORBA.html

5. http://www.jacorb.org/

6. http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

R. Prabakaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4344-4349

www.ijcsit.com 4349

